Viscosity and mutual diffusion of deuterium-tritium mixtures in the warm-dense-matter regime.

نویسندگان

  • J D Kress
  • James S Cohen
  • D A Horner
  • F Lambert
  • L A Collins
چکیده

We have calculated viscosity and mutual diffusion of deuterium-tritium (DT) in the warm, dense matter regime for densities from 5 to 20 g/cm{3} and temperatures from 2 to 10 eV, using both finite-temperature Kohn-Sham density-functional theory molecular dynamics (QMD) and orbital-free molecular dynamics (OFMD). The OFMD simulations are in generally good agreement with the benchmark QMD results, and we conclude that the simpler OFMD method can be used with confidence in this regime. For low temperatures (3 eV and below), one-component plasma (OCP) model simulations for diffusion agree with the QMD and OFMD calculations, but deviate by 30% at 10 eV. In comparison with the QMD and OFMD results, the OCP viscosities are not as good as for diffusion, especially for 5 g/cm{3} where the temperature dependence is significantly different. The QMD and OFMD reduced diffusion and viscosity coefficients are found to depend largely, though not completely, only on the Coulomb coupling parameter Γ , with a minimum in the reduced viscosity at Γ≈25 , approximately the same position found in the OCP simulations. The QMD and OFMD equations of state (pressure) are also compared with the hydrogen two-component plasma model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum molecular dynamics simulations of transport properties in liquid and dense-plasma plutonium.

We have calculated the viscosity and self-diffusion coefficients of plutonium in the liquid phase using quantum molecular dynamics (QMD) and in the dense-plasma phase using orbital-free molecular dynamics (OFMD), as well as in the intermediate warm dense matter regime with both methods. Our liquid metal results for viscosity are about 40% lower than measured experimentally, whereas a previous c...

متن کامل

Transport properties of dense deuterium-tritium plasmas.

Consistent descriptions of the equation of states and information about the transport coefficients of the deuterium-tritium mixture are demonstrated through quantum molecular dynamic (QMD) simulations (up to a density of 600 g/cm(3) and a temperature of 10(4) eV). Diffusion coefficients and viscosity are compared to the one-component plasma model in different regimes from the strong coupled to ...

متن کامل

Nonempirical Semi-local Free-Energy Density Functional for Warm Dense Matter

The potential for density functional theory calculations to address, reliably, the extreme conditions of warm dense matter is predicated upon having an accurate representation for the free energy functional over a wide range of state conditions. Distinct from the ground-state situation, no such exchange-correlation functional exists. We remedy that with a systematic, constraint-based constructi...

متن کامل

A measurable Lawson criterion and hydro-equivalent curves for inertial confinement fusion

Related Articles Recover soft x-ray spectrum using virtual flat response channels with filtered x-ray diode array Rev. Sci. Instrum. 83, 113102 (2012) Average atom transport properties for pure and mixed species in the hot and warm dense matter regimes Phys. Plasmas 19, 102709 (2012) A novel technique for single-shot energy-resolved 2D x-ray imaging of plasmas relevant for the inertial confinem...

متن کامل

Finite-difference-based lattice Boltzmann model for dense binary mixtures.

We propose a finite-difference-based lattice Boltzmann model for dense binary mixtures based on the Enskog theory. The model is applicable to a mixture composed of two dense fluids with different shear viscosities. The macroscopic hydrodynamic and diffusion equations are derived from the model through the Chapmann-Enskog procedure. The model is also validated numerically.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 82 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2010